

CLIMATE CHANGE

International Vehicle Technology Symposium

Dr. Louis Browning March 12, 2003

Introduction

- Alternative fuels and advanced vehicle technologies offer substantial reductions in GHG emissions
- Fuel economy should be stated in miles per equivalent gasoline gallon (mpeg) for direct comparisons (energy basis)
- Comparison of alternative to conventional fuels should consider full fuel cycle emissions to take all factors into account

Full Fuel Cycle...

Emission impacts of alternative fuels should be compared on a full fuel cycle basis

Fuels and Feedstocks

Fuels and Vehicles

Model and Data Sources

- Modified version of ANL GREET 1.6
- California Specific baseline fuels
 - California RFG Phase 3
 - California Low Sulfur Diesel
- California Electricity Generation Mix
- GHG EFs from EPA Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2001
- Fuel economies from EPA Inventory of U.S.
 Greenhouse Gas Emissions and Sinks: 1990-2001 and EPRI HEVWG reports

Scenarios

- New Mid-size Passenger Cars
- GHG Forming Potential
 - $CO_2 = 1$
 - CH₄ = 21
 - $N_2O = 310$
- Near Term 2010
 - Fuels CA RFG 3, CA LS Diesel, CNG, LPG, Electric
 - Vehicles CVs, HEVs, PHEVs, EVs
 - Baseline CV on CA RFG 3 25 mpg

Scenarios

- Long Term 2025
 - Fuels CA RFG 3, CA LS Diesel, Methanol, Ethanol, Hydrogen, Electric
 - Hydrogen Production Central Plant, Refueling Station, Electrolysis
 - Renewables Flared Gas, Land Fill Gas, Biomass
 - Vehicles CVs, SIDI, HEVs, PHEVs, FCV, EVs
 - Baseline CV on CA RFG 3 29 mpg

California Electricity Generation Mix Projections

Determined using ICF Consulting's IPM Forecast Model Average Generation mix assumed for fuel production & transportation use

Fuel	2010 Simulation	2025 Simulation
Residual oil	0.0%	0.0%
Natural gas	48.2%	67.1%
Coal	1.3%	0.8%
Nuclear	15.9%	10.0%
Others	34.6%	22.1%
CC NG / NG	71.9%	88.0%

Fuel Economy Comparisons 2010 Assumptions

Fuel Economy Comparisons 2025 Assumptions

GHG Comparisons

2010 Technologies

GHG Comparisons

2025 Technologies

Hydrogen Production Scenarios

- Central Plant
 - North American Natural Gas
- Refueling Station
 - North American Natural Gas
- Electrolysis

GHG Comparisons

Hydrogen Fuel Cells

Greenhouse Gas Emissions (CO₂ equivalent g/mile)

Renewable Scenarios Double Counting

- Flared Gas used for Methanol or Hydrogen
 - Subtract GHGs that would have occurred if flared
- Land Fill Gas used for Methanol
 - Subtract GHGs from LFG entering atmosphere
- Woody or Herbaceous Biomass used for Ethanol
 - Produces Lignin which can be used to produce electricity
 - Net energy produced is greater than that needed to produce the fuel

Renewable Scenarios

- Renewable Fuels and Feedstocks
 - Methanol from Non-North American Flared Gas
 - Methanol from Land Fill Gas
 - Ethanol from Woody Biomass
 - Ethanol from Herbaceous Biomass
 - Hydrogen from Non-North American Flared Gas

GHG Comparisons

Renewable Fuels in Fuel Cells

Conclusions

- Full fuel cycle GHG emissions are affected by feedstock mix, carbon content of the fuel, and vehicle fuel economy
- Near term technologies
 - Gasoline and Diesel HEVs provide over 30% reduction in GHG emissions
 - Plug-in hybrid vehicles provide over 50% reduction in GHG emissions
 - Electric vehicles provide over 75% reduction in GHG emissions

Conclusions

- Fuel cell vehicles operating on gasoline or methanol from natural gas provide equal benefit to diesel HEVs (35%)
- Fuel cell vehicles operating on hydrogen from natural gas provide equal benefit to PHEVs on gasoline or diesel (50%)
- Renewable fuels can provide negative greenhouse gas emissions due to double counting issues

Conclusions

- Ethanol from herbaceous biomass and methanol from flared gas produce very low greenhouse gas emissions
- Ethanol from woody biomass, hydrogen from flared gas and methanol from landfill gas produce negative greenhouse gas emissions
- Both near term and future technologies can significantly reduce greenhouse gas emissions.
- Solutions need to be cost-effective and acceptable to consumers